M/G/\infty WITH BATCH ARRIVALS

J. KEILSON
GTE Laboratories and Massachusetts Institute of Technology, Cambridge, MA. USA

A. SEIDMANN
University of Rochester, Rochester, NY, USA

Received September 1987
Revised June 1988

Let \( p_n \) be the distribution of the number \( N(n) \) in the system at ergodicity for systems with an infinite number of servers, batch arrivals with general batch size distribution and general holding times. This distribution is of importance to a variety of studies in congestion theory, inventory theory and storage systems. To obtain this distribution, a more general problem is addressed. In this problem, each epoch of a Poisson process gives rise to an independent stochastic function on the lattice of integers, which may be viewed as stochastic impulse response. A continuum analogue to the lattice process is also provided.

queues \* M/G/\infty \* batch arrivals

Introduction

The distribution of the number in the system at ergodicity for systems with an infinite number of servers, batch arrivals with general batch size distribution and general holding times is of importance to a variety of studies in congestion theory, inventory theory and storage systems. To obtain this distribution, a more general problem is addressed. In this problem, each epoch of a Poisson process gives rise to an independent stochastic response function on the lattice of integers.

The simplicity and importance of the results obtained suggest that they may be known, but the authors have not been able to find them in the literature. Interesting transform results in a very general setting have been given by Shanbhag [5] and time dependent distributions have been provided by Brown and Ross [1] for the number of customers in the system. Neither paper, however, provides an explicit form for the ergodic distribution of interest. For related results, the reader is referred to the book [2] by Chaudry and Templeton. The method employed in this note is probabilistic and succinct and may be of independent interest.

1. A more general problem

The work described has been motivated by M/G/\infty batch arrival system needs. The results however relate simply to a more general system context and may have value elsewhere.

For the M/G/\infty batch system, customers arrive at Poisson epochs of rate \( \lambda \) with random batch size and random i.i.d service times to a system having an infinite number of servers. The p.g.f. at ergodicity of \( N(t) \), the number in the system, is wanted. To find this “distribution, we consider the more general problem where, for each arrival epoch \( \tau_k \) of the Poisson stream, there is a stochastic response function \( N^*_k(y) \) having non-negative integer values with \( N^*_k(y) \to 0 \) as \( y \to \infty \). This means that, for a given realization \( \omega \), \( N^*_k(\omega, y) \) is the number of customers in the batch arriving at \( \tau_k \) still in the system at time \( \tau_k + y \).

The random response functions \( N^*_k(y) \) are independent and identically distributed in law. The number in the system \( N(t) \) is then given by

\[
N(t) = \sum_{k=-\infty}^{k=+\infty} N^*_k(t - \tau_k).
\]

To obtain the p.g.f. of \( N(\infty) \) for the general
problem, one notes that because of the Poisson character of the arrival process, one may regard the input stream as a superposition of $M$ independent sub-streams. Each sub-stream has Poisson arrivals of rate $\lambda/M$ and has the same stochastic response function $N^*(y)$ and each sub-stream may be thought of as associated with its own subsystem. The response function $N^*(y)$ will be assumed initially to terminate at the level 0 after a service interval of finite duration $D$. Let $r_n(y) = P[N^*(y) = n]$ be the probability that $n$ customers of the batch remain in the system at time $y$ after the arrival of the batch. During the service interval of length $D$, the batch response function $N^*(y)$ will then be described by the p.g.f.

$$g(u, y) = \sum_{n} r_n(y) u^n.$$  \hspace{1cm} (1)

Because the arrival process for each subsystem is Poisson, the length of the intervals between the termination of service on the previous batch and the start of service on the next batch is exponentially distributed with mean $M/\lambda$. Let $I_n(y), n \geq 0$, be the indicator function for the number in a batch remaining at time $y$ being $n$, i.e. let $I_n(y) = 1$ when $N^*(y) = n$ with $I_n(y) = 0$, otherwise. For a Poisson variate $K$ of parameter $\theta$, $P[K \geq 2] = O(\theta^2)$, $\theta \rightarrow 0$. The number of batches present in a substream is Poisson with parameter $(\lambda/M)E[T_b]$ where $T_b$ is the batch persistence time. Hence the probability that two or more batches are present simultaneously in a subsystem is $O(\lambda^2/M^2)$ as $M \rightarrow \infty$. For any substream, the fraction of time spent in level $n$ at ergodicity, apart from terms of order $O(\lambda^2/M^2)$, is given for $n \geq 1$ by

$$E \left[ \int_0^D I_n(y) \, dy \right] = \frac{\int_0^D r_n(y) \, dy}{D + M/\lambda}.$$  \hspace{1cm} (2)

From the familiar $\lim_{M \rightarrow \infty} (1 + x/M)^M = e^x$, one has that the p.g.f. of the number in the system at ergodicity is for fixed $D$,

$$\pi(u, \infty) = \lim_{M \rightarrow \infty} \left( \frac{M/\lambda + \int_0^D g(u, y) \, dy}{D + M/\lambda} \right)^M + O(\lambda^2/M^2)$$

$$= \exp \left[ -\lambda \int_0^\infty \{1 - g(u, y)\} \, dy \right].$$  \hspace{1cm} (3)

Since the duration of the holding times may be infinite, one obtains

$$\pi(u, \infty) = \exp \left[ -\lambda \int_0^\infty \{1 - g(u, y)\} \, dy \right].$$  \hspace{1cm} (4)

A more formal demonstration of (2) can be obtained from a continuous infinite product representation of $\pi(u, \infty)$. Note that for the ordinary $M/G/\infty$ system with batch size $K = 1$ and service time c.d.f. $A_T(x)$, one has

$$g(u, y) = A_T(y) + uA_T(y).$$  \hspace{1cm} (5)

Hence

$$1 - g(u, y) = A_T(y)(1 - u)$$

and one obtains from (2) the classical result $\pi(u, \infty) = \exp[-\lambda E[T] \ln(1 - u)]$. (See for example Tijms [6].) Equation (2) implies at once that:

Theorem. For a process $N(t)$ with batch poisson arrivals of rate $\lambda$, independent identical random impulse response $g(u, t)$ for each batch and infinite number of servers, the ergodic distribution of the number of items in the system is a compound Poisson distribution with p.g.f. given by (2).

The basic result (2) can be extended by an identical argument to the continuum case for which

$$X(t) = \sum_{k=-\infty}^{k=-\infty} X_k(t - \tau_k).$$  \hspace{1cm} (6)

Here, as above, the summands are i.i.d. stochastic response functions which go to zero as $t$ goes to infinity, and (6) describes the superposition of such response functions to impulses at Poisson epochs. If $\phi(s, \infty) = E[\exp(-sX(\infty))]$ one has

$$\phi(s, \infty) = \exp \left[ -\lambda \int_0^\infty \{1 - \psi(s, y)\} \, dy \right]$$

where $\psi(s, y) = E[\exp(-sX_k(y))]$. In the special case where $X_k^*(y)$ is deterministic and exponential this result coincides with Keilson and Mirman [3]. An extensive discussion of the general deterministic case may be found in Rice [4]. The result extends to multivariate processes of the form (4).

3. $M^\text{batch}/N$

Until now, we have been concerned with the special case of an independent Poisson arrival process with finite batch size. It is straightforward to extend the basic result to the case of an arbitrary independent arrival process with finite batching size. In this case, the results are essentially the same as for the Poisson arrivals with infinite batching size. The proof follows the same lines as the Poisson case and is omitted. The main difference is that the superposition of the response functions to impulses at Poisson epochs is replaced by the superposition of the response functions to impulses at arbitrary epochs. This is a consequence of the fact that the Poisson process is a special case of the more general arrival process.
2. The ergodic mean and variance

From (2) one has at once
\[ E[N(\infty)] = \lambda \int_0^\infty g_u(1, y) \, dy \]
\[ = \lambda \int_0^\infty \sum_n n r_n(1) \, dy. \]

If \( N^*(t) \) is the decreasing number in the system associated with each Poisson epoch, then
\[ E[N(\infty)] = \lambda \int_0^\infty E[N^*(y)] \, dy. \]

In the same way, one finds that
\[ \text{Var}[N(\infty)] = \lambda \int_0^\infty \text{Var}[N^*(y)] \, dy. \]

so that
\[ \text{Var}[N(\infty)] = \lambda \int_0^\infty E[N^*^2(y)] \, dy. \]

3. \( M_{\text{batch}} / M / \infty \)

Until now no assumptions have been made about \( N^*(t) \) other than that batches are served independently. As a check on the formalism, it is helpful to treat by an independent method the special case \( M_{\text{batch}} / M / \infty \), where each customer is served independently and lifetimes are exponentially distributed. Let us also suppose that batch size is exactly \( K \). Then, as for (3)
\[ g(u, y) = \left[(1 - e^{-\theta}) + u e^{-\theta} \right]^K \]
so that for (2) one must evaluate
\[ f_K(u) = \lambda \int_0^\infty \left[(1 - e^{-\theta}) + u e^{-\theta} \right]^K \, dy. \]

From the Binomial expansion, one must then evaluate
\[ h(K, r) = \int_0^\infty (1 - e^{-\theta})^r e^{-\theta^r} \, dy \]
\[ = \left[\theta^{-K} C \right]^{-1} \]
from the integral representation of the Beta function. It follows that
\[ \pi(u, \infty) = \exp \left[ -\lambda \frac{K}{\theta} \frac{1}{1 + r} + \frac{\lambda}{\theta} \frac{K}{1 - r} \right], \]

This may be seen to coincide with the p.g.f. obtained for \( M_{\text{batch}} / M / \infty \) by analysis via a birth-death process for general batch size distribution. Let \( a_n = P[K = n] \) and \( p_n(t) = P[N(t) = n] \). One then has from the forward Kolmogorov equations
\[ \frac{d}{dt} p_n(t) = -\left( \lambda + n \mu \right) p_n(t) + \lambda \left( p_n(t) \right)^* \left( a_n \right) + (n + 1) \mu p_{n+1}(t). \]

The use of generating functions then gives
\[ \frac{\partial}{\partial \mu} \pi(u, \infty) = -\lambda \left[ 1 - a(u) \right] \pi(u, \infty) \]
\[ + \mu (1 - u) \frac{\partial}{\partial u} \pi(u, \infty), \]
i.e.
\[ (1 - u) \frac{\partial}{\partial u} \log \pi(u, \infty) = \frac{\lambda}{\mu} \left[ 1 - a(u) \right]. \]

One has finally
\[ \pi(u, \infty) = \exp \left[ \frac{\lambda}{\mu} \int_1^u \frac{1 - a(w)}{1 - w} \, dw \right]. \]

This may be seen to coincide with (7) when \( a(u) = u^K \).

4. \( M^k / G / \infty \)

For constant batch size and general holding times \( T \) with c.d.f. \( A_T(x) \), one has
\[ g(u, y) = \left[A_T(y) + u A_T(y) \right]^K \]
so that
\[ \pi(u, \infty) = \exp \left[ \lambda \int_0^\infty \left[g(u, y) - g(1, y)\right] \, dy \right] \]
\[ = \exp \left[ \lambda \int_0^\infty \left[A(y) + u A_T(y) \right]^K \right. \]
\[ - \left[A(y) + A_T(y) \right]^K \, dy \right] \]
\[ = \exp \left\{ -\theta \left[ 1 - \beta(u) \right] \right\} \]
where
\[ \theta = \lambda E \left[ \max(T_1, T_2, \ldots, T_i) \right] \]
\[ = \lambda \int_0^\infty \left[ 1 - A^s(y) \right] \, dy. \]
If we use the binomial expansion and denote the binomial coefficients by \( C^K_k \), we obtain

\[
\beta(u) = \frac{\sum_{k=0}^{K} u^k C^K_k \int_0^\infty A^K_k(y) A^{K-k}_k(y) \, dy}{\int_0^\infty [1 - A^K_k(y)] \, dy}
\]

Note that only when \( K = 1 \) is the distribution of \( N(\infty) \) independent of the lifetime distribution. Note also that for constant batch size \( K \) one has from differentiation

\[
E[N(\infty)] = \lambda K E[T].
\]

\[
\text{Var}[N(\infty)] = \lambda K E[T] + \lambda K(K - 1) \times \int_0^\infty [1 - A(y)]^2 \, dy.
\]

in agreement with Tijms (1986). The numerical evaluation of the distribution of \( N(\infty) \) from (9) can be obtained algorithmically from

\[
\exp\{-\theta[1 - \beta(u)]\} = e^{-\theta \sum \frac{\theta^n}{n!} \beta^n(u)}
\]

and \( n \)-fold convolution of the lattice distribution for \( \beta(u) \) with itself. It is clear from the compound Poisson character of (9) that for any holding time distribution with finite mean, when \( K \) is fixed and \( \lambda \) becomes large, the distribution of \( N(\infty) \) becomes normal. Normality does not set in with increasing batch size alone since \( \pi(u, \infty) \) is not the \( K \)-th power of a p.g.f. The normality will be present when \( \theta = \lambda E[\max(T_1, T_2, \ldots, T_k)] \) is large.

Acknowledgement

This study was initiated at and supported in substantial part by the Wm. E.-Simon School of the University of Rochester. The authors are indebted to S. Graves, L. Servi, U. Simuta and D. Nakazato for helpful comments.

References


1. Introduction

Over the first appearance, queuing theory and queueing theory, the service time was the focus. For more recently, the service time distribution setting required. The distribution observed by Mann and Zipkin (1977), its importance set forth. Suppose the service time is independent of the Poisson number of arrivals and let \( T \) be the service time per customer in p.g.f. of