The Impact of Innovation on Product Usage: A Dynamic Model with Progression in Content Consumption

Paulo Albuquerque
Yulia Nevskaya

Simon Graduate School of Business, University of Rochester

August 2012
Studying Product Usage

- Explain product usage with:
 - innovation through product updates or launch of content
 - progression in content consumption

TV Series “24” - 8 Seasons

Angry Birds – Multiple Levels/Updates

Harry Potter – 7 Books
Product Usage

- time consuming activity
 - e.g., online games: the average number of hours per week has gone up from 7.3 hours in 2009 to 8 hours in 2010
 - e.g. soap operas: “the average Briton spends almost a year of their life watching soap operas”
- essential to explain loyalty and repeat-purchase
- determinant for the introduction of new content or product updates
Motivation and Contribution

Studying Product Usage

- However, it has not been frequently studied, mostly due to lack of data (mostly surveys, experiments)
- Emergence of new data sets that track product usage, especially in online environments
 - e.g., dataset on cell-phone usage; location tracking within stores; behavior of software users in cloud services
 - e.g., Wall Street Journal, June 29, “Your E-Book Is Reading You”, market segmentation and targeting:
 - according to data collected by digital publisher Coliloquy from romance-novel readers: “The perfect man, has a European accent and is in his 30s with black hair and green eyes.”
Contribution

- Propose a demand model that explains product usage patterns: what content do individuals consume?
- Provide insights for managerial decisions regarding innovation and product updates:
 - segmentation: how do different consumer segments change usage patterns as a response to product updates?
 - innovation rate: what is the value for the firm of a product update measured through participation rates?
 - scheduling of product updates: can the schedule of innovation be used to manage overall consumer participation?
Data - *World of Warcraft*

- Online computer game *World of Warcraft*, with 11 million players worldwide in 2010
- Users assume a character that explores an online environment

Product Updates and Progression

- Content is introduced over time (choice set) and follows a sequence in the storyline (20 levels)
- Players can choose to progress in the storyline by consuming the latest content

- Revenues directly related to usage through subscription and time-based pricing
Consumer Decisions

- Daily level decisions of a sample of 350 experienced players
- Decision: which content to consume or which task to perform in the game
Model

- Consumer i is deciding to do action j, at time t, or an outside option.
- Action j_p of product update p is ranked with a level of progression l_j.
- Innovation/Product updates ($p = 1, ..., P$):
 - expand the choice set of content available
 - introduce content of higher progression levels
- Progression in content consumption:
 - at time t, consumers are in state l_{it}, defined by the highest-level task performed to date t.
Per-period Utility

- Per-period utility of enjoying content or doing action \(j \) (of patch \(p \)) at time \(t \) for individual \(i \) (of level \(l \))

\[
u_{ijpt} = \alpha_0i + \alpha_1j + \alpha_2X_t + \beta_1ip\tau_{ipt} + \beta_2ip\tau_{ipt}^2 + \]

Intrinsic Preferences \hspace{1cm} Novelty

\[
\gamma_i \cdot |l_{it} - l_j| + \delta_1i \cdot |l_{it} - \bar{l}_t| + \delta_2iG_{it} + \epsilon_{ijt}
\]

Content Match \hspace{1cm} Community Effect

- Components from literature on product usage (e.g., Holbrook and Hirschman, 1982)

- The determinist utility of the outside good is set to zero
Model Dynamics

- **States:** \(S_{it} = \{l_{it}, \tau_{ipt}, X_t, p_t\} \)

- **State transitions, denoted by** \(\pi(S_{it+1} \mid S_{it}) \):
 - individuals progress if they perform an action of higher level
 - novelty/satiation changes as \(\tau \) advances by one period
 - more available choices when a product update is introduced

- **Consumer expectations and knowledge:**
 - launch date and number of updates: based on historic launch schedule and number
 - future \(\alpha_j \) and community level \(\bar{l}_t \): based on past observed values, characteristics of content and evolution
Choice Probabilities and Likelihood

- Complete utility of action a_{it} and choice probabilities, with parameter vector Θ_i:

$$v(a_{it}, S_{it}; \Theta_i) = u(a_{it}, S_{it}; \Theta_i) + \delta \int_S V_{t+1}(S_{it+1}; \Theta_i) \pi(S_{it+1}|S_{it}, a_{it}) dS_{it+1},$$

$$Pr(a_{it}, S_{it}; \Theta_i) = \frac{\exp(v(a_{it}, S_{it}; \Theta_i))}{\sum_{a'\in A_t} \exp(v(a'_{it}, S_{it}; \Theta_i))}.$$

- Likelihood over individuals i and over time t

$$Log \ Likelihood = \sum_{i=1}^{N} \sum_{t=1}^{T} (a_{it} \log(Pr(a_{it}, S_{it}, \Theta)))$$

where a_{it} is the realized action of individual i at time t
Estimation

- Constraint optimization (Su and Judd, 2011), which replaces backwards induction
 - maximize data likelihood subject to a consumer value function
- Expectation-Maximization (EM) algorithm (Arcidiacono and Jones, 2007),
 - unobserved heterogeneity with discrete segments in a forward-looking setting
Parameter Estimates

- Three distinct segments: hard-core players (seg. 2); laggards (seg. 1); average player (seg. 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Segment 1</th>
<th>Segment 2</th>
<th>Segment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Intercepts (α)</td>
<td>-13.297 (0.375)</td>
<td>-6.835 (0.081)</td>
<td>-8.111 (0.118)</td>
</tr>
<tr>
<td>Match with Task (γ)</td>
<td>-0.674 (0.013)</td>
<td>-1.131 (0.035)</td>
<td>-0.645 (0.020)</td>
</tr>
<tr>
<td>Community Effect (δ)</td>
<td>-0.118 (0.241)</td>
<td>0.580 (0.023)</td>
<td>0.235 (0.058)</td>
</tr>
<tr>
<td>Segment size</td>
<td>0.258 (0.010)</td>
<td>0.338 (0.010)</td>
<td>0.404 (0.010)</td>
</tr>
</tbody>
</table>
Progression by Segment

- Segment 1
- Segment 2
- Segment 3

Legend:
- mean level of a segment
- mean level of tasks completed by gamers in a segment
- mean level of overall gamers population
Three waves of distinct consumers
Counterfactual I: Evaluating a Product Update

- Removed product update 3 from the market
- Tasks: 16,001 vs. 13,966 (-12.7%) = $8.5 million in revenues
Counterfactual II: Postponing one Product Update

- Analyzing the decision to postpone the last product update by 2 months (from time period 421 to 477)
- Product updates can be used to manage usage and peak usage of innovators only
Conclusions

- Model to explain product usage: which content to consume?
 - analyze demand patterns: what motivates usage over time for different segments?
 - how many product updates to launch?
 - when to launch those product updates?

- Substantive results:
 - targeting: product updates communicated at the correct time and customized to be available to the right users
 - value of innovation is largely driven by users that have explored all aspects of the product, who motivate others
 - scheduling is important to manage usage load, but mostly of innovators