Teaching Supervised and Unsupervised Learning Methods

Rajib L. Saha
Indian School of Business
Courses I teach

– Business Analytics using Data Mining
 • Supervised and Unsupervised learning
 • Elective in full-time MBA program

– Data Mining – I
 • Unsupervised learning
 • Graduate-level, 15 months long, part-time program in analytics
What I’m going to talk about today

1. Course curriculum in brief (to set the context)

2. Three course components in details
 i. The framework for a course project
 ii. Facilitate learning through peer evaluation – a framework for evaluation
 iii. Offline videos to facilitate learning in a software-dependent course

3. Datasets I have been using for projects
Course curriculum in brief
(refer to uploaded document for details)

Business Analytics using Data Mining (BADM)

- **Supervised Learning**
 - Explaining vs. Predicting
 - Prediction and classification goals and performance evaluation
 - A bunch of prediction and classification methods

- **Unsupervised Learning**
 - Clustering
 - Principal Component Analysis
 - Association Rules

Data Mining – I (DMg-I)

- **Unsupervised Learning**
 - K-Means and Hierarchical clustering
 - PCA and SVD as dimension reduction methods
 - Association Rules and Sequential Pattern Mining as methods for relationship mining
 - Recommender Systems
 - Network Analytics
Predictive Analytics

• An emphasis on understanding ...
 – Explaining vs. Prediction goals
 – Choice of metrics for evaluating the predicting power of a method
Prediction ≠ Explaining

• Choice of methods
• Choice of predictors
• The importance of cross validation
• Choice of evaluation metrics/evaluation of models
I position a supervised learning method based on what it can do

<table>
<thead>
<tr>
<th>Method</th>
<th>Numerical Y</th>
<th>Categorical Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Explain</td>
<td>Predict</td>
</tr>
<tr>
<td>Linear Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k-NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensembles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation of classification models

Goal
- Profiling (explaining) vs. Classification (prediction)
- Classifying vs. ranking

Adding Information
- Asymmetric class importance
- Asymmetric misclassification cost

Classification performance
- Confusion matrix
- Sensitivity, Specificity, Precision, F1-Score, and ROC curve
- Lift Chart (for ranking)
Project Framework
Predictive Analytics

• Project ideation
• Intermediate project report
• Project presentation
• Final project report
Execution of the project

1. Read “12 predictive analytics screw-ups”
2. Ideation
3. Meet instructor
4. Intermediate project report
5. Project presentation
6. Peer feedback
7. Read “Embarking on a business analytics career?”
8. Instructor feedback
9. Final project report
12 predictive analytics screw-ups

• Refer to the uploaded article
Project Ideation
1/5. Business Goal

• Who is the stakeholder or the client with regard to the business objective you are proposing?
• A description of the business objective? What are the benefits of implementing this idea? What opportunity is it creating? What shortcoming does it address?
• What sorts of decisions (by the stakeholder) are involved in achieving this goal?
• What would be considered a success? How would you quantify success?
Project Ideation

2/5. Analytics/Data Mining goal

• Provide a description of the analytics objective/ data mining problem.

• Is this a supervised or unsupervised task? Is it predictive or descriptive? Is it retrospective or forward-looking?

• What is the main outcome variable(s) of interest?

• What predictors are needed?
Project Ideation
3/5. Data Preparation

• Provide a brief description of the available data.
• Provide some guidance on the dataset that will be used and the pre-processing or data preparation that might be needed before you can build a model to address the data mining problem.
• Provide a sample of ten rows (records) with column (variable) names that will be used --- that is, how the dataset is going to look post data preparation phase and before you build your models.
Project Ideation
4/5. Methods and Evaluation

• What are some data mining methods to consider?

• Which performance measures are appropriate? How do they align with the business goal?
Project Ideation
5/5. Implementation/Recommendation

• Operational requirements or constraints (for example, will the solution be run in real-time? will it require collecting new data? will it be a one-time analysis or ongoing?)
Execution of the project

1. Read “12 predictive analytics screw-ups”
2. Ideation
3. Meet instructor
4. Intermediate project report
5. Project presentation
6. Peer feedback
7. Read “Embarking on a business analytics career?”
8. Instructor feedback
9. Final project report
Peer evaluation
A framework for evaluating projects

- Project on predictive analytics

Refer to uploaded document for details
Embarking on a Business Analytics Career?

- Refer to the uploaded article
Project Framework
Unsupervised Learning

• Describe the key **insight** in not more than one sentence.

• **Steps** (data processing, tools used, parameters chosen, etc.) to reproduce the insight

• **Social and/or business values** of the insight(s) to specific **stakeholders**
Peer evaluation
A framework for evaluating projects

• A project on using unsupervised learning methods

Refer to uploaded document for details
Offline video content for software-dependent course

• *Refer to a sample video*
 – *Running_classification_tree.mp4*
Public datasets I’ve used for projects and assignments, so far

• Data from hosted competitions on Kaggle.com
• UCI machine learning repository
• Crime data from Chicago data portal data.cityofchicago.org/
• International trade-flow data from http://www.wto.org/
Thank you