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Abstract. Classical models of customer decision making in unobservable queues assume
acquiring queue length information is too costly. However, due to recent advancements in
communication technology, various services now make this kind of information accessi-
ble to customers at a reasonable cost. In our model, which reflects this new opportunity,
customers choose among three options: join the queue, balk, or inspect the queue length
before deciding whether to join. Inspection is associated with a cost. We compute the
equilibrium in this model and prove its existence and uniqueness. Based on two normal-
ized parameters—congestion and service valuation—wemap all possible input parameter
sets into three scenarios. Each scenario is characterized by a different impact of inspection
cost on equilibrium and revenue-maximization queue disclosure policy: fully observable
(when inspection cost is very low), fully unobservable (when inspection cost is too high),
or observable by demand (when inspection cost is at an intermediate level). We show that
when maximizing social welfare, the optimal disclosure policy is zero inspection cost. We
show the structure remains the same when a fraction of the customers are considered
urgent, that is, they always join, whereas the others are nonurgent and therefore join
according to their equilibrium strategy.
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1. Introduction
The classical model of strategic customers’ decisions
in an unobservable queue assumes acquiring queue-
length information is too costly. However, today’s
communication technology makes online information
accessible at a reasonable cost, and customers canmake
use of this information when deciding whether to join
a queue. In many cases, this information is available at
no charge, but still it is not costless to the customers
who spend time and effort to obtain it, whether they
preregister, download relevant application, or even
acquire relevant terminal interface equipment. Several
papers discuss another type of cost associated with
obtaining information, especially online through the
service provider’s site. Customers are often required to
reveal personal information that they might not other-
wise be willing to provide (Miyazaki and Fernandez
2001, Sheehan 2002, Hann et al. 2002, Huang and Van
Mieghem 2014). In this sense, the inspection cost is real
and not a transfer payment from customer to service
provider.
Online queue-length information is a relatively new

option. Most of the services providing such informa-
tion are healthcare services, and hospitals all over the
United States and Canada have recently started pub-
lishing their emergency rooms (ERs) expected waiting
times on their websites. For example, more than 20

distinct hospitals and dozens of support facilities are
under the management of Florida Hospital, which pro-
vides current ER waiting times for every location on
its website, at www.floridahospital.com. Patients are
encouraged to check this information prior to arrival,
and decide whether to arrive to the ER or to turn to an
alternative facility.

The Ontario government also provides such infor-
mation to the public. Its website http://www.health
.gov.on.ca/en/public/programs/waittimes/edrs/default
.aspx publishes current waiting times at 126 Ontario
ERs and urgent care centers. According to the site,
the Ontario government considers this reporting “an
important part of our commitment to being open and
accountable about how well we are doing in achieving
our two top healthcare priorities: reducing ER wait
times and improving access to family healthcare.”
Patients in Ontario can also observe queue lengths for
specific medical procedures such as surgery, MRIs,
or CT scans. For more ER waiting-time examples,
see JFK medical center at jfkmc.com/our-services/
er-wait-time.dot and Reston hospital center at www
.restonhospital.com.

Other services also publish online queue informa-
tion such as waiting times for voting locations (see
www.votepinellas.com), security check-in times at in-
ternational airports (see Atlanta International Airport
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Figure 1. The Decision Process

A customer arrives to
an unobservable queue

Join Inspect Balk

www.atlanta-airport.com/passenger/waittimes), bor-
der-crossing times (see the Canada Border Services
www.cbsa.gc.ca/bwt-taf), and amusement-park waits
(see Disney touringplans.com/disney-world-app).
We consider customers arriving to a single-server

queue. To the traditional question of join or balk, we
add a third option: customers may choose to acquire
information about the queue length prior to making
their decision.

Our model’s solution consists of the probability of
each action in equilibrium. If a customer inspects the
queue, the next step is similar to Naor’s observable
queue model.

When the inspection cost is very high, customers
do not inspect the queue, and the decision is as in
the unobservable queue model. In contrast, when the
inspection cost is negligible, all customers inspect the
queue and join according to the observable queue
model. The flowchart in Figure 1 shows the customers’
decision problem.

We approach the model from two main directions:
(a) we characterize the (Nash) equilibrium strategy and
prove its existence and uniqueness; (b) we analyze the
impact of inspection cost on equilibrium, revenue, and
social welfare.

1.1. Existence and Uniqueness of the Equilibrium
A major challenge of this research is to prove the exis-
tence and uniqueness of the equilibrium strategy in
our symmetric game of homogenous customers. In a
typical model of congestion, participants try to avoid
others, and hence respond inversely to their actions.
For example, an increase in the propensity of others
to join a queue tends to discourage the individual
from joining. This behavior is called avoid the crowd
(ATC). The opposite behavior of follow the crowd (FTC)
is also common. For example, the more customers buy
priority in a queueing system, the more an individ-
ual is inclined to follow and buy priority for himself.
FTC behavior typically results in multiple equilibria,
whereas ATC provides a unique equilibrium (Hassin
and Haviv 2003, pp. 6–7).
However, this discussion is limited to models in

which the decision is one dimensional. Adding another

option to the set of actions, as we suggest here, in-
creases the model’s complexity and requires a new
examination of the ATC and FTC concepts. This
research is a pioneering step in that direction.

We prove the existence and uniqueness of the equi-
librium by analyzing geometric properties of the cus-
tomers’ expected utility set (EUS). We used this proof
in another paper for a model of sequential inspection
of queueing systems (Hassin and Roet-Green 2016).

1.2. The Impact of Inspection Cost
Consider a profit-maximizing service provider wish-
ing to maximize system revenue by maximizing the
throughput (effective joining rate). This assumption
coincides with settings such as ERs, where entrance
fees are exogenously given. Can the provider use
inspection cost to maximize throughput?

The answer depends on the system parameters.
Unsurprisingly, the throughput associated with an
observable queue is higher in some cases, and in oth-
ers, it is lower than that of an unobservable queue (see
Hassin 1986, Chen and Frank 2004). For example, when
the (potential) arrival rate is small, the equilibrium
throughput is larger in the unobservable case, where
all join in, whereas in the observable case, some may
still observe a long queue and balk. By contrast, when
the arrival rate is very high and the service valuation is
not much larger than the waiting cost incurred during
service, providing the queue information increases the
throughput.

Our contribution to the literature lies in mapping
all possible input parameter sets into three scenarios
based on the changing of the equilibrium as a function
of inspection cost. For each scenario, we provide the
revenue-maximizing solution, which points to a dis-
closure policy: observable queue (low inspection cost),
unobservable queue (high inspection cost), or inspect-
by-demand queue (at an intermediate-level inspection
cost). Our analysis confirms that, for many cases, the
revenue-maximization solution is achieved with an
intermediate level of inspection cost. Controlling the
accessibility of the queue information can affect the
inspection cost. For example,

• Publishing the queue length on the service
provider’s website. The inspection cost increases as the
search becomes harder: Does the information pop up
on the website’s home page, or does it require an addi-
tional search? Does it involve a registration process?
How intrusive is the registration process?

• Smartphone application. How easy is it to down-
load?

• Offering the information by phone call or
text messaging.

We also show that for all scenarios, as the cost of
inspection increases, social welfare decreases. Maxi-
mum welfare is achieved when the cost of inspection
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is zero, which is the observable model. Therefore the
social planner should encourage service providers to
reduce the inspection cost.
We discuss the provider’s decision process with

respect to healthcare applications: ERs in private and
public hospitals, walk-in clinics, and also hospital ser-
vice of private rooms upon request. Healthcare analy-
sis raises another interesting question: How would the
analysis change when considering urgent and nonur-
gent customers arriving to the same facility? Research
has shown that at least 40% of patients attending ERs in
the United States are nonurgent patients (see, e.g., Gill
1994, Padgett and Brodsky 1992, Petersen et al. 1998).
By assuming urgent customers join the queue without
inspection, we focus on the behavior of the nonurgent
customers at equilibrium. We show the general struc-
ture of the analysis is maintained, and the range of
parameter values representing congestion and service
valuation for which inspection at a positive cost maxi-
mizes revenue increases with the fraction of nonurgent
customers.

1.3. Related Literature
Ourmodel bridges two of the fundamental perceptions
in strategic queueing theory: the observable queue
(Naor 1969), and the unobservable queue (Edelson and
Hildebrand 1975). Several other papers also bridge the
two models. In the work of Marianov et al. (2005), cus-
tomers also face a two-phase decision problem. First,
customers decide whether to travel to the unobserv-
able queue center. After arriving, the queue becomes
observable and the customers’ next decision is whether
to join. Customers are heterogeneous in their travel
and waiting costs. In equilibrium, a fraction of the
customers balk, whereas the rest arrive to the queue,
observe its length, and join only if it is under a cer-
tain threshold. Due to different waiting costs, each
customer has his own threshold. The main difference
between this model and ours is that it introduces
a one-dimensional decision to customers at the first
phase, whereas in our model, customers face a two-
dimensional decision in the first phase. Our idea of an
inspection cost is different from a travel cost, because
customers in our model can avoid the inspection and
costlessly join the unobservable queue, but they cannot
avoid travel costs.

Other papers assume that some of the customers are
informed but customer types are predetermined and
not a decision variable as in our model. Large and
Norman (2010) assume a make-to-stock producer sell-
ing to customers with heterogeneous product valua-
tions. A fraction of the customers see the queue length,
whereas the others are uninformed and only those
with valuations higher than a critical value join.

Hu et al. (2016) consider a single queue with two
customer types, informed customers who observe the

queue length and uninformed customers. The fraction
of informed customers is exogenous. These authors
characterize the equilibrium and, similar to our find-
ing, conclude the throughput function is unimodal in
the fraction of informed customers.

Xu and Hajek (2013) present a multiserver model
with unobservable queues. Inspection of the queues
prior to joining is possible, but has a cost. Customers
decide prior to arrival on the number k of queues to
inspect. After inspecting these queues, they join the
shortest one. Also, this model bridges the unobserv-
able case with k � 0 and the observable case with k � N .
The authors solve the model asymptotically when the
number of servers grows to infinity, and show the exis-
tence of a symmetric equilibrium strategy in this game.
For a comprehensive survey of queueing models with
strategic customers, see Hassin (2016).

Only a few other papers analyze customer decisions
of whether to buy queue-length information. Hassin
and Haviv (1994) consider a system with two identical
parallel servers.Anarriving customer canacquire infor-
mation about which queue is shorter by paying a fixed
amount, and then join the shorter queue. A customer
who does not purchase the information chooses one of
the queues randomly. After joining, customers jockey
costlessly from one queue to another, when the differ-
ence between them reaches a given threshold of N . The
authors compute the value of information and the equi-
librium threshold strategies. Intuitively, we expect the
value of information to be a decreasing function of the
proportion of informed customers p, inducing an ATC
type of behavior.However, the authors show that under
certain parameters, this value increases with p, induc-
ing an FTC type of behavior.

Hassin and Roet-Green (2016) assume that cus-
tomers arrive to a system of parallel queues where
inspection of the queue is required prior to joining.
The queues vary in their service rates and inspection
costs. The customer chooses which queue to inspect
first, and based on that information, decideswhether to
continue inspecting another queue. After each inspec-
tion, the customer can decide whether to join one of the
inspected queues. In many cases, the equilibrium strat-
egy contains cascades: customers choose one action
(join or inspect) when they observe i and i + 2 cus-
tomers in their first observed queue, and the other
action when they observe i + 1 customers in their first
observed queue.

Sundar and Ravikumar (2014) consider a model
with two service providers that dynamically set their
prices in a market with two customer types. Some cus-
tomers randomly select a server and either join or balk,
whereas the others first observe both queues and then
decide to join one or balk. The main difference from
our model is that a customer’s type is predetermined
and not a decision variable.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

66
.6

6.
12

2.
25

4]
 o

n 
15

 M
ar

ch
 2

01
7,

 a
t 1

1:
20

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Hassin and Roet-Green: The Impact of Inspection Cost
4 Operations Research, Articles in Advance, pp. 1–17, ©2017 INFORMS

Another aspect we consider in our paper is social
welfare maximization. We show the best result is
achieved when the inspection cost is zero. Although
this result may look intuitive, it is not that simple,
because customers behave selfishly and do not always
use the search information in a socially desirable way.
For example, when the proportion of informed cus-
tomers is exogenous, for some parameters, social wel-
fare decreases as the fraction of informed customers
increases (see Hu et al. 2016). By contrast, our result
implies that when the provider controls only the
inspection cost, and customers maximize their own
utility, the observable queue is optimal. Our different
result is driven by our model assumption that the pro-
portion of informed customers is endogenous, that is,
determined in equilibrium.

The remainder of this paper is structured as fol-
lows: In Section 2, we present the mathematical model.
In Section 3, we prove the existence and uniqueness
of a symmetric equilibrium. In Section 4, we analyze
the impact of inspection cost on equilibrium, revenue,
and social welfare. In Section 5, we provide manage-
rial insights for service providers, given their service
parameters. In Section 6, we analyze the impact urgent
customers have on the equilibrium. We conclude our
main results in Section 7.

2. The Model
We consider an unobservable M/M/1 first-come first-
served queue. Arriving customers face three options:
join the queue, balk, or inspect queue length first and
then decide whether to join. We use the following
notation:

• CW is waiting cost per unit time. We assume
CW > 0.

• CI is the cost of inspecting the queue. We assume
CI > 0.

• λ is the arrival rate.
• µ is the service rate.
• R is the service valuation.
• A customer inspects the queue with probability

PI .
• A customer joins the queue without inspecting it

with probability PJ .
• A customer balks with probability PB .
Following Naor (1969), we denote

ν �
Rµ
CW

(1)

as the normalized value of service measured in units of
expected waiting cost for a single service completion.
In the same sense, and as derived from the numerical
analysis of this paper, we denote the normalized cost
parameter

κ �
CIµ

CW
(2)

and the normalized congested parameter (i.e., the system
use factor)

ρ �
λ
µ
. (3)

As in Naor’s model, a customer observing a queue
of length i, joins if i 6 ne − 1, where

ne �

⌊
Rµ
CW

⌋
� bνc . (4)

Note that when ne is an integer, the customer is indif-
ferent between joining and balking when i � ne −1. We
adopt Naor’s tie-breaking rule and assume that, in this
case, the customer joins.

A consequence of this strategy is that the effective
arrival rate is

λe �

{
(1−PB)λ i 6 ne − 1,
PJλ i > ne .

(5)

Denote by πi the stationary probability of queue
length i. If ν < 1, then ne � 0 and PB � 1 is a dominant
strategy. To avoid trivialities, we assume ν > 1. The bal-
ance equation for 0 6 i 6 ne − 1 is

(1−PB)λπi � µπi+1 ,

and for i > ne , the balance equation is

PJλπi � µπi+1.

To simplify the presentation, we define

ξ � (1−PB)ρ,
η � 1−PJρ.

(6)

Note that, in equilibrium, PJρ < 1, and as a result,
0 < η < 1. The stationary distribution for i > 0 is

πi �

{
ξ iπ0 i 6 ne − 1,
ξne (1− η)i−neπ0 i > ne ,

and for i � 0, if ξ , 1,

π0 �

[ne−1∑
i�0
ξ i

+ ξne

∞∑
i�ne

(1− η)i−ne

]−1

�

[
1− ξne

1− ξ +
ξne

η

]−1

,

and if ξ � 1,
π0 �

η

neη+ 1 .

The expected utility from balking without inspect-
ing is

UB � 0.
The expected utility from inspecting the queuewhen

ξ , 1 is

UI �

ne−1∑
i�0
πi

(
R−CW

i +1
µ

)
−CI

� π0

[
R · 1− ξ

ne

1− ξ −
CW

µ
· 1−(ne +1)ξne + neξ

ne+1

(1− ξ)2

]
−CI ,

(7)
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and for ξ � 1, it is

UI �
neη[2µR−CW (ne + 1)]

2µ(neη+ 1) . (8)

The expected utility from joining the queue without
inspecting it if ξ , 1 is

UJ �

∞∑
i�0
πi

(
R−CW

i +1
µ

)
�R− CW

µ
π0

·
[

1−(ne +1)ξne + neξ
ne+1

(1− ξ)2 +
ξne (neη+1)

η2

]
, (9)

and if ξ � 1, it is

UJ � R− CW

µ

[
ne(ne + 1)η
2(neη+ 1) +

1
η

]
. (10)

We assume customers are strategic in the sense that
they maximize their own expected utility, and there-
fore choose their best-response strategies. Because
customers in this model are homogeneous, we are
interested in a symmetric equilibrium. A strategy pro-
file (PI ,PB ,PJ) is a symmetric equilibrium profile if it is
a best response against itself. The best-response strate-
gies (PI ,PB ,PJ) satisfy PI > 0, PB > 0, PJ > 0, PI + PJ +

PB � 1, and in addition,

UI >max{UJ , 0}⇒ PI � 1
0 >max{UI ,UJ}⇒ PB � 1
UJ >max{UI , 0}⇒ PJ � 1
UJ � 0 >UI⇒ PI � 0
UJ � UI > 0⇒ PB � 0
UI � 0 >UJ⇒ PJ � 0
UI � UJ � 0⇒ 0 6 PI ,PJ ,PB 6 1.

(11)

3. Existence and Uniqueness of the
Equilibrium Strategy

As discussed in the introduction, when customers
choose among three actions, the solution is two dimen-
sional. Therefore, the standard one-dimensional ATC
property does not apply Here, and we are required to
prove the existence and uniqueness of the equilibrium
by using two-dimensional topological analysis. Our
main result in this section is summarized in Theorem 1.
Theorem 1. For each set of normalized parameters ρ, ν, κ,
a unique symmetric Nash equilibrium strategy exists.
The full proof of Theorem 1 is given in Appendix A,

and we only provide the outline of the proof here.
The proof is based on the topological and geometrical
properties of the EUS, which represents the expected
utilities from every possible symmetric strategy. Given
the set of normalized parameters, ρ, ν, κ, we define the
EUS as follows:

EUS � {(x , y) | there exists (PI ,PB)
such that UI � x ,UJ � y}. (12)

An example of the EUS for ρ � 0.5, ν � 1.43, κ � 0.14
is shown in Figure 2(a); the boundaries and vertices of
the EUS are marked with the corresponding strategy
type.

The EUS is defined on the expected utility space.
This space is divided into seven regions shown in
Figure 2(b):

1. UJ >max{UI , 0} (region 1).
2. UI >max{UJ , 0} (region 2).
3. max{UI ,UJ} < 0 (region 3).
4. UI � UJ > 0 (region 4).
5. UI � 0 >UJ (region 5).
6. UJ � 0 >UI (region 6).
7. UI � UJ � 0 (region 7).
Recall that a symmetric equilibrium strategy satis-

fies the equilibrium conditions (11). Therefore the equi-
librium is obtained at an intersection point between
the EUS and the region that represents the corre-
sponding relation among the utilities. For example, if
the EUS vertex that represents PI � 1 is in region 2,
where UI > max{UJ , 0}, then PI � 1 is a best response
against itself, and therefore defines a symmetric equi-
librium strategy. The following is another example.
If the left boundary of the EUS, representing all the
strategies that satisfy {PI > 0,PJ > 0,PB � 0}, intersects
with region (line) 4, where UI �UJ > 0, the intersection
point defines a symmetric equilibrium.

In only one scenario does no such intersection exist;
namely, when the origin is included in the EUS. Any
inner point of the EUS represents a mixed strategy,
where 0 < PI ,PJ ,PB < 1. At the origin, UI � UJ � 0, and
therefore if the origin appears as an inner point of the
EUS, it defines a symmetric equilibrium strategy.

To show existence, we need to show such an intersec-
tion is always defined. To do so, we prove two topolog-
ical properties of the EUS, summarized in Lemma 1.
Lemma 1. The EUS is a nonempty compact set and its inte-
rior is a simply connected domain.

The nonemptiness property of the EUS ensures that
given the set of parameters, the EUS appears on the
expected utility space. The compactness of the EUS
ensures its boundaries are well defined, and as a result,
an equilibrium can be defined on the boundaries. By
proving the EUS is simply connected, we ensure that
if the origin is included in the EUS, which implies the
equilibrium is defined as an inner point, this point is
also included in the EUS.

To prove these properties, we rely on the definition
of the EUS as the image of the mapping f : (PI ,PB) →
(UI ,UJ). The strategy set is a triangle, defined as
follows:

T � {(PI ,PB): PI ,PB > 0,PI +PB 6 1}. (13)

This triangle is a nonempty compact set, and its interior
is a simply connected domain. To prove these proper-
ties are preserved in the EUS, we prove the mapping f
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Figure 2. (Color online) The EUS is Defined on the Expected Utility Space
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(a) Expected utility set (EUS) for
 � = 0.5, � = 1.43, and � = 0.14
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0.4
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0.8
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UJ

3. max(UI, UJ) < 0

2. UI > max(UJ, 0)

4. UJ = UI > 0

1. UJ > max(UI, 0)

5. UJ = 0 > UI

 6. UI = 0 > UJ

7. UJ = UI = 0 

(b) Expected utility space

is a homeomorphism: a continuous one-to-one map of a
topological space onto another topological space such
that the inverse mapping is also continuous. By prov-
ing the mapping is a homeomorphism, we prove the
topological properties of the strategy set are preserved
in the EUS. An illustration of the mapping is given in
Figure 3.
The proof of homeomorphism includes two steps.

First, we prove f is continuous. Second, we prove it
has a continuous inverse by showing the Jacobian of f
is nonzero. Then, by the inverse function theorem,
the mapping f is bĳective and therefore a homeo-
morphism.

Figure 3. (Color online) Homeomorphism Between the
Probability Set and the EUS

PI

0 0.5

1.0

0.5

0

–0.1

0.5

1.5

UI

PB

UJ

1.0

0.1

By proving Lemma 1, we prove the existence of a
symmetric equilibrium strategy in this game. More-
over, we distinguish between seven different types of
equilibrium, which correspond to the seven cases of
condition (11). A symmetric equilibrium is defined
when

(a) The projection of PB � 1 on the EUS appears in
region 3, where 0 >max{UI ,UJ}.

(b) The projection of PJ � 1 on the EUS appears in re-
gion 1, where UJ >max{UI , 0}.

(c) The projection of PI � 1 on the EUS appears in
region 2, where UI >max{UJ , 0}.

(d) The left boundary of the EUS, which is the pro-
jection of {PI > 0,PJ > 0,PB � 0}, intersects with line 4,
where UI � UJ > 0.
(e) The lower boundary of the EUS,which is the pro-

jection of {PI � 0,PJ > 0,PB > 0}, intersects with line 5,
where UJ � 0 >UI .

(f) The upper boundary of the EUS, which is the
projection of {PI > 0,PJ � 0,PB > 0}, intersects with
line 6, where UI � 0 >UJ .
(g) The origin, which is the projection of PI + PB +

PJ � 0, is included within the EUS, where UI � UJ � 0.
Recall that by assuming ν > 1 or equivalently R −

CW/µ > 0, we exclude PB � 1 from our analysis. All
six other types of equilibrium are shown in Figure 4.
What is left to prove is that no matter where the EUS
appears on the expected utility space, at least one inter-
section that defines an equilibrium occurs. To prove
that assertion, we locate the projection of PJ � 1 on
the EUS in every possible region and go through all
possible appearances of the EUS on the expected util-
ity space given the position of that vertex. We prove
that for every possibility, an equilibriummust exist. We
repeat the process with the projection of PI � 1.
Next, we prove the equilibrium is unique by show-

ing that, for every possible EUS, no more than one
intersection exists with the space regions such that this
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Figure 4. (Color online) Defining Pure and Mixed Equilibrium Points via the EUS
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(c) Mixed equilibrium at {PI > 0, PJ > 0, PB = 0}
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(d) Equilibrium at {PI = 0, PJ > 0, PB > 0}
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(e) Equilibrium at {PI > 0, PJ = 0, PB > 0}
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(f) Equilibrium at {PI > 0, PJ > 0, PB > 0}

intersection defines an equilibrium. To do so, we prove
Lemma 2.
Lemma 2. The EUS boundaries are strictly increasing with
a slope > 1.
We use the geometrical property of the EUS as

described in Lemma 2 to show that for any possible

location of the EUS, only one intersection between the
EUS and the different regions of the expected utility
space defines a symmetric equilibrium. To do so, we fix
the vertex that projects the strategy PJ �1 in all possible
regions, and check every possible intersection, elimi-
nating those intersections that cannot exist given the
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boundaries’ geometrical properties. We repeat the pro-
cess for the vertex that represents PI � 1. The detailed
proof is given in Appendix A.

4. The Impact of Inspection Cost
In this section, we analyze the impact of inspection cost
on equilibrium strategy, revenue, and social welfare.

4.1. Equilibrium as a Function of
Inspection Cost

The equilibrium strategy is a function of inspection
cost. When inspection cost is very low, all customers
inspect the queue. In this case, the queue becomes
observable.
When inspection cost is very high, customers do not

inspect the queue and it remains unobservable. The
equilibrium strategy then would be the same as in the
unobservable queuemodel. Given our assumption that
R − CW/µ > 0, the probability of joining the unobserv-
able queue is strictly positive (0 < PJ > 1). What would
be the equilibrium when inspection cost is at an inter-
mediate level?
We now look into the evolution of the equilibrium

strategy as the inspection cost κ increases from 0 to
infinity. We use the following parameters:

K1 �min{S1 ,S2},

where S1 �
(1−ρ)ρne

1−ρne+1 (ne +1− ν),

and S2 � ν
1−ρne

1−ρne+1 −
1−(ne +1)ρne + neρ

ne+1

(1−ρ)(1−ρne+1) ,

K2 �
x(1−ρ)ρne h(ρ)

(1−ρne )x +ρne (1−ρ) ,

where x solves x �
ne − ν+

√
(ne − ν)2 +4h(ρ)
2h(ρ)

and h(ρ)� 1
ρne

[
ν

1−ρne

1−ρ −
1−(ne +1)ρne + neρ

ne+1

(1−ρ)2

]
,

K3 �
ξne (1− ξ)
1− ξne+1 (ne +1− ν),

where ξ solves ν�
1+ ξ+ ξ2 + · · ·+ ξne −(ne +1)ξne+1

1− ξne+1 ,

K4 � ne

(
1− 1

ν

)ne

,

K5 �ρ
ne

(
ne − ν+

1
1−ρ

)
. (14)

We can provide the following interpretation for
the constants K1, K2, K3, K4, and K5. We already
argued PI � 1 for κ � 0. We define K1 as the maximum
inspection-cost level for which the equilibrium strat-
egy is PI � 1. This level is achieved in one of two sce-
narios: either UI � UJ > 0 or UI � 0 > UJ . Substituting

into the definitions of UI and UJ and solving the cor-
responding equalities, we get K1 � S1 for UI � UJ > 0,
and K1 � S2 for UI � 0>UJ . Moreover, for ν > (∑ne

i�0 ρ
i −

(ne + 1)ρne+1)/(1− ρne+1), S1 > S2; otherwise, S1 6 S2.
Next, we define the minimum cost for which the

EUS contains the origin. Denote K2 for the case where
K1 � S1, and K3 for the case where K1 � S2.
We also define the minimum cost for which the equi-

librium strategy implies all customers do not inspect
the queue length; that is, PI � 0. Denote K4 for the case
where PJ < 1, and K5 for the case where PJ � 1.

We distinguish among three scenarios:
Scenario 1. In equilibrium, {PI > 0,PJ > 0,PB � 0} for

K1 < κ 6 K5, and PJ � 1 for κ > K5.
Scenario 2. In equilibrium, {PI > 0,PJ > 0,PB � 0} for

K1 < κ 6 K2, {PI > 0,PJ > 0,PB > 0} for K2 < κ 6 K4, and
{PI � 0,PJ > 0,PB > 0} for κ > K4.
Scenario 3. In equilibrium, {PI > 0,PJ � 0,PB > 0} for

K1 < κ 6 K3, {PI > 0,PJ > 0,PB > 0} for K3 < κ 6 K4, and
{PI � 0,PJ > 0,PB > 0} for κ > K4.
Proposition 1 shows for every set of parameters, if

we increase the inspection cost from 0 to∞, only one of
those three scenarios exists. Later, we show that when
maximizing revenue, each scenario implies a different
queue disclosure policy.

Proposition 1. For κ 6 K1, PI � 1 in equilibrium.
Suppose κ > K1. If ρ < 1, then
1. if ν > 1/(1− ρ), scenario 1 holds.
2. if 1+ ρ/(1+ ρ) < ν 6 1/(1− ρ), scenario 2 holds.
1. if ν 6 1+ ρ/(1+ ρ), scenario 3 holds.

Otherwise, if ρ > 1, then for every ν and its correspond-
ing ne ,

1. if ν > (∑ne
i�0 ρ

i − (ne + 1)ρne+1)/(1− ρne+1), scenario 2
holds.

2. if ν 6 (∑ne
i�0 ρ

i − (ne + 1)ρne+1)/(1− ρne+1), scenario 3
holds.

The proof of Proposition 1 is given in Appendix B.
Figure 5 maps every pair (ρ, ν) to an equilibrium sce-
nario 1, 2, or 3. Note the discontinuity of equilibrium
scenario 3 follows from the discontinuity of the observ-
able queue threshold, ne .

Corollary 1. As κ increases, the probability PI of the equi-
librium strategy decreases while PJ and PB increase.

Corollary 1 follows immediately from Proposition 1.
Figure 6 is an example of how inspection cost trans-
forms the queue from observable to unobservable,
according to scenario 2. The fixed parameters are ρ �

0.8, ν � 2.33. The top graph shows PI ; the middle graph
shows PB ; the bottom graph shows PJ .

4.2. Revenue as a Function of Inspection Cost
This section focuses on the optimization of inspection
cost when the service provider can monitor this cost.
We define expected revenue as a monotone increasing
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Figure 5. Mapping of Equilibrium Scenarios
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Figure 6. (Color online) For ρ � 0.8 and ν � 2.33: As κ
Increases, the Observable Queue Becomes Unobservable
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function of PE, the expected throughput in the sys-
tem; that is, the probability that an arriving customer
is served. Hence the provider’s problem is to select the
value of κ that maximizes PE, where

PE � P(Enter | Inspect) · P(Inspect)+P(Join)

�

ne−1∑
i�0
πi · PI +PJ �

1− ξne

1− ξ · π0 · PI +PJ . (15)

Denote by Pobs
E (and Punobs

E ) the probability of enter-
ing the queue when κ is small (large) such that all
customers (do not) inspect the queue. Then,

Pobs
E �

1− ρne

1− ρne+1 < 1,

Punobs
E � min

{
ν − 1
νρ

, 1
}
. (16)

Note that when ρ > 1, Punobs
E � (ν − 1)/(νρ) < 1.

To characterize the change in PE as κ increases, we
use the following lemma and observation.

Lemma 3. (1.) While UI �UJ > 0, PE increases with κ.
(2.) While UI � 0 >UJ , PE decreases with κ.

Observation 1. While UI �UJ � 0, PE decreases with κ.

Proposition 2. For any pair (ρ, ν),
1. if scenario 1 holds, PE increases with κ and

reaches the maximum at every κ > K5.
2. if scenario 2 holds, PE is a unimodal function of κ

and reaches the maximum at K2.
3. if scenario 3 holds, PE decreases with κ and

reaches the maximum at every κ 6 K1.
The proofs of Lemma 3, Proposition 2, and the

numerical analysis that implied Observation 1 are
given in Appendix B. The following proposition deter-
mines the optimal inspection cost at each scenario.

Figure 7 shows two examples of how, in different
scenarios, the equilibrium strategy (PI ,PB , and PJ are
shown in the three top graphs) and PE (bottom graph)
change as κ increases (on the x-axis).

4.3. Social Welfare as a Function of
Inspection Cost

We now examine the effect of the inspection cost on
social welfare. Recall that inspection cost is not consid-
ered a transfer payment to the service provider, but a
real cost of the effort customers incur to obtain queue
length information. Therefore the inspection cost is
included in social welfare, which we define as

SW � λ(PJUJ +PIUI).

Proposition 3. For any pair (ρ, ν), SW is monotonically
decreasing with κ and obtains its maximum when κ � 0.

The proof of Proposition 3 is given in Appendix B.

5. Discussion
We discuss our results while referring to various
healthcare service settings; namely, private ERs, public
ERs, walk-in clinics, and private hospital rooms upon
request. We represent these settings by (illustrative)
level of congestion (ρ) and customers’ service valua-
tion (ν), as shown in Table 1.
Our analysis elicits managerial insights for each ser-

vice setting. For private ERs, where congestion is low,
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Figure 7. (Color online) PE as a function of κ under different scenarios

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
0.5
1.0

PI

PB

PJ

PE

0
0.5
1.0

0
0.5
1.0

0.7
0.8

0
0.5
1.0

PI

PB

PJ

PE

0
0.5
1.0

0
0.5
1.0

0.5
0

1.0

�

A

A
B

B

B

C

C

C D

D

D

A

A B

DC

(a) When � = 0.95 and � = 2.5, scenario 2 holds, and PE is a unimodal
function of �. The maximum is obtained when � = 0.5595 = K2.
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(b) When � = 0.99 and � = 1.1, scenario 3 holds, and PE is
monotonically decreasing with �.

the equilibrium follows scenario 1: customers join the
unobservable queue with probability 1. In this case,
keeping the queue unobservable is in the best inter-
ests of the private healthcare provider. Revealing infor-
mation might discourage potential customers from
joining.
For public ERs where congestion is high, the case

is different and equilibrium follows scenario 2. Our
results as described in Proposition 2 suggest that for
revenue maximization, the provider should control
the cost of inspection, thereby raising throughput and
revenue. But a public health-care provider is more
likely to prefer to maximize social welfare over rev-
enue, and therefore make the queue observable, which
would reduce congestion as compared to the revenue-
maximization solution. This policy also applies for
many public services characterized by high congestion,
such as Department of Motor Vehicles and Social Secu-
rity Administration offices.

However, for walk-in clinics, Proposition 2 implies
that providers should make queue length observable
to some extent. Because walk-in clinics are managed by
private healthcare providers, one can assume revenue
management is in their best interests. The inspection
cost can be, for example, a requirement for registration
at the provider’s website, or it can be an exposure to
advertisements for other commercial goods alongside

Table 1. Three different service settings corresponding to
three possible scenarios

Corresponds to
Service ρ ν scenario no.

Private ER 0.3 (low) 5 (high) 1
Public ER 0.9 (high) 5 (high) 2
Walk-in clinic 0.6 (moderate) 3 (moderate) 2
Private hospital 0.5 (moderate) 1.3 (low) 3

rooms upon
request

the waiting time publication. This solution applies to
many other private services such as banks, popular
restaurants, and department stores.

Last, we consider the example of requesting a pri-
vate room at admission to a hospital. The valuation of
the service is much lower when compared to the other
cases, such that it follows scenario 3, where an observ-
able queue maximizes revenue and social welfare.

6. Heterogeneous Service Valuations
We consider two classes of customers. Class 1 cus-
tomers value the service so highly that their dominant
strategy is to join the queue without inspection. Fol-
lowing themotivating example of ERs, we refer to them
as urgent customers. Class 2 customers have a smaller
service valuation. We refer to them as nonurgent cus-
tomers. For simplicity, we assume all customers have
the same waiting cost.

Let q ∈ (0, 1) be the proportion of urgent customers
in the population. Then,

λi �

{
[q + (1− q)(1−PB)]λ i < ne ,

[q + (1− q)PJ]λ i > ne .
(17)

Denote:
ξ̄ � [q + (1− q)(1−PB)]ρ,
η̄ � 1− [q + (1− q)PJ]ρ.

(18)

The analysis of Sections 2 and 3 of this paper holds
with ξ̄ instead of ξ and η̄ instead of η, including Theo-
rem 1. In the sameway, the analysis of Section 4 regard-
ing the impact of inspection cost also holds when
substituting ξ̄ and η̄. Let K̄1, K̄2, K̄3, K̄4, and K̄5 be the
corresponding thresholds to K1, K2, K3, K4, and K5. We
use the corresponding thresholds for defining scenar-
ios 1–3 for the heterogeneous case, in corresponding to
Proposition 1.
Proposition 4. For κ 6 K̄1, the equilibrium strategy is
PI � 1.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

66
.6

6.
12

2.
25

4]
 o

n 
15

 M
ar

ch
 2

01
7,

 a
t 1

1:
20

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Hassin and Roet-Green: The Impact of Inspection Cost
Operations Research, Articles in Advance, pp. 1–17, ©2017 INFORMS 11

Suppose κ > K̄1. If ρ > 1, then, using K̄2, K̄3, K̄4, and K̄5,
respectively,
1. if ν > 1/(1− ρ), scenario 1 holds;
2. if 1 + 1/(1 − qρ) − 1/(1 + (1 − q)r) < ν 6 1/(1 − ρ),

scenario 2 holds;
3. if ν 6 1 + 1/(1 − qρ) − 1/(1 + (1 − q)r), scenario 3

holds.
Otherwise, if ρ > 1, then for every ν and its correspond-
ing ne ,
1. if

ν >

(
1− ρne

1− ρ +
ρne

1− qρ

)−1

·
[

1− (ne + 1)ρne + neρ
ne+1

(1− ρ)2 +
ρne (ne(1− qρ)+ 1)
(1− qρ)2

]
,

scenario 2 holds;
2. if

ν 6

(
1− ρne

1− ρ +
ρne

1− qρ

)−1

·
[

1− (ne + 1)ρne + neρ
ne+1

(1− ρ)2 +
ρne (ne(1− qρ)+ 1)
(1− qρ)2

]
,

scenario 3 holds.

Following Proposition 4, the region of scenario 1 on
the ρ − ν space does not change with q. However, as q
decreases, the region of scenario 2 grows larger at the
expense of the region of scenario 3. Corollary 2 sum-
marizes this result.

Corollary 2. The region in the ρ–ν space for which inspec-
tion at a positive cost maximizes revenue increases with the
fraction of nonurgent customers.

7. Concluding Remarks
Our contribution to the literature lies in two aspects.
From the analytical point of view, we provided a proof
of the existence and uniqueness of the equilibrium
using the topological properties of the EUS.
From the operations point of view, our main result is

that, enabling inspection of queue length at a cost may
increase throughput. This result may appear counter-
intuitive because more customers join the queue when
the information has a cost as opposed to when it is free.

By adding this third action to the join or balk classi-
cal discussion, we expand the provider’s ability to con-
trol the customers’ behavior, allowing the provider to
maximize revenue by increasing throughput. We pro-
vide a concrete characterization of the model parame-
ters for which adding inspection at a cost leads to the
desirable result.

In relation to social welfare, we show the social plan-
ner should aspire to decrease the inspection cost to the
minimum becausemaximumwelfare is achievedwhen

the queue is observable.We argue that the provider can
influence the inspection cost in several ways. Future
research could analyze the extent to which a provider
should invest in reducing the inspection cost. Assum-
ing such an investment is monotonically decreasing
with CI , and given that social welfare is also decreas-
ing with CI , a socially optimal cost investment exists
for the provider to reduce inspection cost, and the cor-
responding inspection cost is greater than zero.

We focus on analyzing the classical M/M/1 queue
model. The results remain very similar under the gen-
eral arrival assumption. Yechiali (1971) showed that in
the case of a G/M/1 observable queue model, an equi-
librium threshold strategy exists. Because the calcula-
tion of the threshold in the G/M/1 model is different
than in the M/M/1 model, it would require changes
in the equations, and the numerical results would be
different. Yet, we expect the nature of the results to stay
the same as in the M/M/1 model.

The general service rate case, however, is different.
Kerner (2011) showed that customer strategy in the
M/G/1 model is not always characterized by a thresh-
old. In addition, the equilibrium in the M/G/1 model
is not always unique. Therefore, whether our results
would hold for that model is unclear, and pursuing
such a different model is left for future research.

We focused on analyzing a single-queue model as a
primary and necessary step in understanding the influ-
ence of inspection costs on the unobservable queue
model. However, expanding this model into the case of
queueing systemswithmany servers is a natural exten-
sion. The authors conducted such research in another
paper as we described in the introduction (see Hassin
and Roet-Green 2016).

Most of the paper dealt with homogenous cus-
tomers. In Section 6, we discussed the case of hetero-
geneous customers when we considered urgent versus
nonurgent customers. The results imply that for more
parameter sets, as the proportion of urgent customers
in the population increases, the revenue is maximized
when the queue is observable.

Considering similar models with customer hetero-
geneity with respect to delay cost or inspection cost
could be interesting. These threads are open for future
research.

Acknowledgments
This research was conducted as a part of a Ph.D. dissertation
at Tel Aviv University.

Appendix A. Proof of Theorem 1
To prove Theorem 1, we prove Lemma 1 by proving the map-
ping f : (PI ,PB)→ (UI ,UJ) is a homeomorphism.

Definition 1. Homeomorphism is a continuous one-to-one
map of a topological space X onto a topological space Y such
that f −1 is also continuous (Kelley 1955, p. 87).
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From Equations (7) and (9), it follows that UI and UJ are
continuous for any fixed set of parameters, and therefore the
mapping (PI ,PB)→ (UI ,UJ) is continuous.

We use the following lemma (from Ma 2002, p. 39).

Lemma 4. Let f : X→Y be a continuous bĳection. IfX is compact,
f is a homeomorphism.

To prove f is bĳective, we first show (PB ,PI) → (ξ, η) is
bĳective. Then, we show (ξ, η)→ (UI ,UJ) is bĳective. There-
fore (PB ,PI)→ (UI ,UJ) is bĳective.

Because ξ� (1−PB)ρ and η� 1−(1−PB−PI)ρ, the Jacobian
of the transformation (PB ,PI)→ (ξ, η) is

J(ξ, η)�
����� ξ′PB

ξ′PI

η′PB
η′PI

������ ξ′PB
· η′PI
− η′PB

· ξ′PI
�−ρ2 , (A.1)

and because ρ > 0, the Jacobian is nonzero, and by the inverse
function theorem, the mapping is bĳective. We now use the
same argument to prove (ξ, η)→ (UI ,UJ) is bĳective. We use
the presentation of UI ,UJ in (7) and (9), divide each equation
by CW/µ, and use the definition ν � Rµ/CW :

UI � R ·
[ (1− ξne )η
(1− ξne )η+ ξne (1− ξ)

− 1
ν
·
(1− (ne + 1)ξne + neξ

ne+1)η
(1− ξ)((1− ξne )η+ ξne (1− ξ))

]
−CI ,

UJ � R ·
[
1− 1

ν

( (1− (ne + 1)ξne + neξ
ne+1)η

(1− ξ)((1− ξne )η+ ξne (1− ξ))

+
ξne (neη+ 1)(1− ξ)

η((1− ξne )η+ ξne (1− ξ))

)]
.

We look at the Jacobian of this transformation:

J(UI ,UJ) �
����� UI

′
ξ UI

′
η

UJ
′
ξ

UJ
′
η

������UI
′
ξ ·UJ

′
η
−UI

′
η ·UJ

′
ξ

�
R2ξne−1

ην2(1− ξ)(η− ξne (ξ−1+ η))3

·
(
ne

3(1− ξ)2ξne η2− ne
2(1− ξ)2ξne η(ην−2)+ ne

·
(
−ξη2

+ ξ2ne+1[(1− ξ)2− η2]
+ ξne

[
(1− ξ)2 +2ξη2−(1− ξ)3ν]

)
+ ξ(1− ξne )

[
ξne (ξ−1+ η)[2+ (ξ−1− η)ν]

+ η(ην−2)
] )
.

Lemma 5. For all R > 0, ν > 1, ξ > 0, and 0 < η < 1,
J(UI ,UJ) < 0.

Proof. For simplicity, we use n in the proof instead of ne . We
start by proving the denominator of the Jacobian is always
positive. The denominator is a product of ην2 > 0 and the
terms (1− ξ) and (η− ξn(ξ−1+ η))3 � (η(1− ξn)+ (1− ξ)ξn)3.
For ξ < 1, the last two terms are positive, and for ξ > 1, both
terms are negative. Therefore the product is positive and the
denominator is positive. For ξ � 1, the denominator is zero,
but calculating the limit of the Jacobian is possible, as we
show later.

We now wish to determine the sign of the numerator.
Denote the numerator as M:

M � R2ξn−1 ·
(
n3(1− ξ)2ξnη2− n2(1− ξ)2ξnη(ην−2)
+ n

[
− ξη2

+ ξ2n+1[(1− ξ)2− η2]
+ ξn((1− ξ)2 +2ξη2−(1− ξ)3ν)

]
+ ξ(1− ξn)

[
ξn(ξ−1+ η)[2+ (ξ−1− η)ν]

+ η(ην−2)
] )
. (A.2)

Because R2ξn−1 > 0, it is enough to find the sign of the rest of
the numerator. For fixed n, note M is a linear function of ν,
where n 6 ν < n + 1. Therefore, it is enough to prove M has
the same sign when ν � n and ν→ n + 1. First, we consider
the case where ν � n:

M̃ � n3(1− ξ)2ξnη2− n2(1− ξ)2ξnη(ηn−2)
+ n

[
−ξη2

+ ξ2n+1[(1− ξ)2− η2]
+ ξn((1− ξ)2 +2ξη2−(1− ξ)3n)

]
+ ξ(1− ξn)

[
ξn(ξ−1+ η)(2+ (ξ−1− η)n)+ η(ηn−2)

]
� 2n2(1− ξ)2ξnη−2ξ(1− ξn)2η

+ nξn(1− ξ)2(1− n(1− ξ)+ ξ)−2ξn+1(1− ξn)(1− ξ).

For n � 1, M̃ � 0. We now show M̃ < 0 for all n > 2. We first
prove

2n2(1− ξ)2ξnη−2ξ(1− ξn)2η
�2ξ(1− ξ)2η · [n2ξn−1−(1+ ξ+ ξ2

+ · · ·+ ξn−1)2]< 0. (A.3)

Because 2ξ(1− ξ)2η > 0, it is enough to show n2ξn−1 < (1+ ξ
+ ξ2 + · · · + ξn−1)2. Both terms are positive and therefore we
can look at the square root: nξ(n−1)/2 < 1+ ξ + ξ2 + · · ·+ ξn−1.
For all ξ and n > 1, the function: f (n) � ξn−1 is positive,
monotonic decreasing, and convex. If n is even, then from
convexity, a system of n/2 inequalities holds:

1
2 (1+ ξ

n−1) > ξ(n−1)/2

1
2 (ξ + ξ

n−2) > ξ(n−1)/2

...
1
2 (ξ

n/2−1
+ ξn/2) > ξ(n−1)/2.

If n is odd, a system of (n−1)/2 inequalities and one equality
hold:

1
2 (1+ ξ

n−1) > ξ(n−1)/2

1
2 (ξ + ξ

n−2) > ξ(n−1)/2

...
1
2 (ξ
(n−3)/2

+ ξ(n+1)/2) > ξ(n−1)/2

ξ(n−1)/2 � ξ(n−1)/2.

In both cases, when summing all the inequalities in each
system, we get

nξ(n−1)/2 < 1+ ξ + ξ2
+ · · ·+ ξn−1.

Next, we prove the remaining elements are negative as well:

nξn(1− ξ)2(1− n(1− ξ)+ ξ)−2ξn+1(1− ξn)(1− ξ)
� ξn(1− ξ)2

[
n(1− n(1− ξ)+ ξ)−2ξ(1+ ξ+ ξ2

+ · · ·+ ξn−1)
]
.
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Because ξn(1−ξ)2 > 0, it is enough to show n[1−n(1−ξ)+ξ]
− 2ξ(1 + ξ + ξ2 + · · · + ξn−1) < 0. We prove this by induction.
For n � 2, we get

2[1−2(1− ξ)+ ξ]−2ξ(1+ ξ)�2(−1+2ξ− ξ2)�−2(1− ξ)2 < 0.

Next, we assume that the statement is true for n and use it to
prove it is also true for n + 1:

(n +1)(1−(n +1)(1− ξ)+ ξ)−2ξ(1+ ξ+ ξ2
+ · · ·+ ξn)

� n[1− n(1− ξ)+ ξ]−2ξ(1+ ξ+ ξ2
+ · · ·+ ξn−1)− n(1− ξ)

+1−(ξ+1)(1− ξ)+ ξ−2ξn+1 <−n(1− ξ)
+1−(n +1)(1− ξ)+ ξ−2ξn+1

�−2n(1− ξ)+2ξ(1− ξn)
�−2(1− ξ)[n− ξ(1+ ξ+ ξ2

+ · · ·+ ξn−1)]
<−2(1− ξ)(n− ξn)�−2n(1− ξ)2 < 0,

which completes the proof of Equation (A.3).
We now show M (Equation (A.2)) is strictly negative when

ν→ n + 1:

lim
ν→n+1

M � R2ξn−1 ·
(
n3(1− ξ)2ξnη2− n2(1− ξ)2ξnη(η(n +1)−2)

+ n
[
−ξη2

+ ξ2n+1((1− ξ)2− η2)+ ξn((1− ξ)2 +2ξη2

−(1− ξ)3(n +1))
]
+ ξ(1− ξn)(ξn(ξ−1+ η)

· [2+ (ξ−1− η)(n +1)]+ η(η(n +1)−2))
)
.

Following the same process, we reduce the problem into
determining the sign of M̂, where

M̂ � M̃ − n2(1− ξ)2ξnη2 − nξn(1− ξ)3

+ ξn+1(1− ξn)[(1− ξ)2 − η2]+ ξ(1− ξn)η2

� M̃ − η2[n2(1− ξ)2ξn − ξ(1− ξn)2] − nξn(1− ξ)3

+ ξn+1(1− ξn)(1− ξ)2. (A.4)

We already proved n2(1− ξ)2ξn − ξ(1− ξn)2 < 0. By adding it
to the first two terms of M̃ (Equation (A.3)), we get

(2η− η2)[n2(1− ξ)2ξn − ξ(1− ξn)2]
� η(2− η)[n2(1− ξ)2ξn − ξ(1− ξn)2] < 0.

Lastly, we show −nξn(1− ξ)3 + ξn+1(1− ξn)(1− ξ)2 < 0:

−nξn(1− ξ)3 + ξn+1(1− ξn)(1− ξ)2

� ξn(1− ξ)3[−n + ξ(1+ ξ + ξ2
+ · · ·+ ξn−1)]

< ξn(1− ξ)3[−n + nξ]
�−nξn(1− ξ)4 < 0.

To complete the proof, we need to show M < 0 for all 1 <
ν < 2. Note that when ν � 1, M̃ � 0, but when ν � 1, R �

CW/µ, and the expected utility from inspecting the queue
becomes negative, regardless of the strategies of other cus-
tomers. Therefore, inspecting the queue becomes dominated
by the other two actions and can be omitted. As a result, the
game becomes a two-action game that has a unique solution
due to ATC. Furthermore, because M̂ � −ξ(1 − ξ)4 < 0 for
ν→ 2, we can deduce that M < 0 for all 1 < ν < 2.

When ξ � 1,

lim
ξ→1

J(UI ,UJ)�−
n(n +1)(−4+6ν−2n + n(n−1)t(2+ nt− tν))

12t(1+ nt)3ν2 .

The denominator is a product of strictly positive terms and
therefore is strictly positive. In the numerator, n(n+1)> 0.We
want to show the other term in the product is strictly positive.
Because ν > n > 1, −4 + 4ν > 0 and 2ν − 2n > 0. 2 + nt − tν �
2− t(ν − n) > 1, because t < 1 and ν − n < 1. By combining all
these terms, we deduce that the numerator is strictly positive,
as is the entire fraction. From the minus sign, we conclude
the limit exists and is strictly negative. �

By proving M̃ and M̂ are strictly negative for all ν > 1,
we conclude the Jacobian of the mapping is nonzero, and
therefore the continuous mapping is a homeomorphism.
Homeomorphism preserves topological properties (Reid and
Szendrői 2005, pp. 113–118), and thus the topological proper-
ties of the triangle T—nonempty simply connected compact
set—are preserved in the EUS.

Proof of Existence. The following analysis is based on the
EUS topological properties. We show an equilibrium exists
for all possible scenarios. If the point where PJ � 1 is in
region 1, PJ � 1 is a pure equilibrium. Otherwise, PJ � 1 has
to be in region 2 or 3. First, assume that PJ � 1 is in region 2.
If PI � 1 is also in region 2, PI � 1 is a pure equilibrium. Oth-
erwise, based on Lemma 2, PI � 1 must be in region 1. In
that case, the boundary {PI > 0,PJ > 0,PB � 0} must intersect
with line (region) 4, and {PI > 0,PJ > 0,PB � 0} is a mixed
equilibrium.

Assume that the point where PJ � 1 is in region 3. If PI � 1
is in region 2, PI � 1 is a pure equilibrium. Otherwise, PI � 1
must be in region 1 or 3. If PI � 1 is in region 1, one of the
following three cases must occur:

(1) {PI > 0,PJ > 0,PB � 0} intersects with line 4, and then
{PI > 0,PJ > 0,PB � 0} is a mixed equilibrium (e.g., see
Figure 4(c)).

(2) {PI � 0,PJ > 0,PB > 0} intersects with line 5, and then
{PI � 0,PJ > 0,PB > 0} is a mixed equilibrium (e.g., see
Figure 4(d)).

(3) The origin is contained in the EUS, and then {PI > 0,
PJ > 0,PB > 0} is a mixed equilibrium (e.g., see Figure 4(f)).

Otherwise, PI � 1 must be in region 3 and then one of the
following three cases must occur:

(1) {PI > 0,PJ � 0,PB > 0} intersects with line 6, and then
{PI > 0,PJ � 0,PB > 0} is a mixed equilibrium (e.g., see
Figure 4(e)).

(2) {PI � 0,PJ > 0,PB > 0} intersects with line 5, and then
{PI � 0,PJ > 0,PB > 0} is a mixed equilibrium.

(3) The origin is contained in the EUS, and then {PI > 0,
PJ > 0,PB > 0} is a mixed equilibrium.

Proof of Lemma 2. From (7) and (9),

UJ(UI)� UI +CI −V(UI), (A.5)

where
V(UI)�

∞∑
i�ne

πi

(
CW

i + 1
µ
−R

)
> 0. (A.6)

V(UI) is the value of the information; that is, the expected gain
from the balking option when queue length turns out to
be ne or longer. Note that V(UI) is positive as a sum of posi-
tive components.

The outline of the proof is as follows. We show the change
in the strategy vector along the boundaries increases the
probability of shorter queue lengths. As a result, UI increases
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but V(UI) decreases. Then, V′(UI) < 0 and U′J(UI) > 1. We
verify each boundary is increasing with a slope > 1:

• When {PI > 0,PJ � 0,PB > 0}, then PJ � 0 and η � 1.
Along this boundary, PI decreases from 1 to 0 while PB
increases from 0 to 1, and therefore ξ decreases. In this
case, queue length cannot exceed ne . Therefore V(UI) �
πne
(CW ((i + 1)/µ) − R). We show the derivative of πne

�

ξne /∑ne
i�0 ξ

i with respect to ξ is positive:

dπne

dξ
�
ξne−1[∑ne−1

i�0 (ne − 1)ξ i]
(∑ne

i�0 ξ
i)2

> 0, (A.7)

and therefore as ξ decreases, V(UI) decreases while UI
increases, and we conclude this boundary is strictly increas-
ing with a slope > 1.

• When {PI > 0,PJ > 0,PB � 0}, then PB � 0 and ξ is fixed
and equals ρ. Along this boundary, PI increases from 0 to 1,
while PJ decreases from 1 to 0. As a result, η increases, as
well as π0. Because for 06 i 6 ne −1, πi � ρ

iπ0, the probability
of shorter queues increases, and as a result, UI increases. We
prove that in this case, V(UI) decreases with η (see Lemma 6
in Appendix A). As a result, UJ increases even more. There-
fore, this boundary is strictly increasing with a slope > 1.

• When {PI � 0,PJ > 0,PB > 0}, PI � 0 and η� 1− ξ. Along
this boundary, PB increases from 0 to 1, while PJ decreases
from 1 to 0. As a result, ξ decreases, η increases, π0 � 1 − ξ
increases, and so does the probability that the queue length is
shorter than ne , which is ∑ne−1

i�0 ξ i(1− ξ)� 1− ξne . As a result,
UI increases. We prove that in this case, V(UI) decreases
along the border (see Lemma 7 in Appendix A). Therefore
we conclude that UJ increases even more and this boundary
is strictly increasing with a slope > 1. �

Proof of Uniqueness. Using both Lemmas 1 and 2, we show
that no more than one of the six scenarios introduced in the
existence proof can occur under the assumption R > CW/µ.

Assume the point where PJ � 1 is in region 1; then PJ � 1
is a pure equilibrium. From Lemma 2, one can conclude the
entire EUS is in region 1, and therefore the equilibrium is
unique. See Figure 4(a) for an example. Otherwise, PJ � 1
must be in region 2 or 3. First, assume that PJ �1 is in region 2.
Then, PI � 1 can be in region 1 or 2:

(I) If PI � 1 is in region 2, PI � 1 is a pure equilibrium.
The EUS boundaries {PI > 0,PJ � 0,PB > 0} and {PI � 0,PJ >
0,PB > 0} intersect with line 4, but these intersections do not
define another equilibrium (e.g., see Figure 4(a)).

(II) If PI � 1 is in region 1, the boundary {PI > 0,PJ > 0,
PB � 0} must intersect with line 4, and {PI > 0,PJ > 0,PB � 0}
is a mixed equilibrium. The EUS boundary {PI � 0,PJ > 0,
PB > 0} also must intersect with line 4, but this intersection
does not define an equilibrium.

Next, assume the point where PJ � 1 is in region 3. Then,
PI � 1 can be in region 1, 2, or 3:

(I) If PI � 1 is in region 2, PI � 1 is a pure equilibrium.
In this case, the EUS boundaries {PI > 0,PJ � 0,PB > 0} and
{PI � 0,PJ > 0,PB > 0} intersect with line 4, and the bound-
aries {PI > 0,PJ > 0,PB � 0} and {PI � 0,PJ > 0,PB > 0} inter-
sect with line 6, but these intersections do not define another
equilibrium (see Figure 4(b)).

(II) If PI � 1 is in region 1, one of the following three cases
must occur:

(1) {PI > 0,PJ > 0,PB � 0} intersects with line 4, and then
{PI > 0,PJ > 0,PB � 0} is a mixed equilibrium. No other equi-
librium exists here, because the intersections {PI > 0,PJ > 0,
PB � 0} and {PI � 0,PJ > 0,PB > 0} with line 6 and {PI � 0,
PJ > 0, PB > 0} with line 4 do not define another equilibrium
(e.g., see Figure 4(c)).

(2) {PI � 0,PJ > 0,PB > 0} intersects with line 5, and then
{PI � 0,PJ > 0,PB > 0} is a mixed equilibrium. The intersec-
tion of the boundary {PI > 0,PJ > 0,PB � 0} with line 5 does
not yield another equilibrium (e.g., see Figure 4(d)).

(3) The origin is contained in the EUS, and then {PI > 0,
PJ > 0, PB > 0} is a mixed equilibrium. No other equilibrium
exists here, because the intersections {PI > 0,PJ > 0,PB � 0}
with line 5 and {PI � 0,PJ > 0,PB > 0} with line 6 do not
define another equilibrium (e.g., see Figure 4(f)).

(III) If PI � 1 is in region 3, one of the following three cases
must occur:

(1) {PI > 0,PJ � 0,PB > 0} intersects with line 6, and then
{PI > 0,PJ � 0,PB > 0} is a mixed equilibrium. The intersec-
tion of {PI � 0,PJ > 0,PB > 0} with line 6 does not define
another equilibrium (e.g., see Figure 4(e)).

(2) {PI � 0,PJ > 0,PB > 0} intersects with line 5, and then
{PI � 0,PJ > 0,PB > 0} is a mixed equilibrium. The intersec-
tion of {PI � 0,PJ > 0,PB > 0} with line 5 does not define
another equilibrium.

(3) The origin is in the EUS, and then {PI > 0,
PJ > 0, PB > 0} is a mixed equilibrium. The intersections of
{PI � 0, PJ > 0, PB > 0}with lines 4 and 6, and the intersection
of {PI > 0, PJ > 0, PB � 0} with line 5 do not define another
equilibrium.

If the point where PJ � 1 is in region 1, PJ � 1 is a pure equi-
librium. See Figure (4(a)) for an example. Otherwise, PJ � 1
must be in region 2 or 3. First, assume PJ � 1 is in region 2. If
PI � 1 is also in region 2, PI � 1 is a pure equilibrium (e.g., see
Figure 4(b)). Otherwise, based on Lemma 2, PI � 1 must be
in region 1. In that case, the boundary {PI > 0,PJ > 0,PB � 0}
must intersect with line (region) 4, and {PI > 0,PJ > 0,PB � 0}
is a mixed equilibrium.

Assume the point where PJ � 1 is in region 3. If PI � 1 is in
region 2, PI � 1 is a pure equilibrium. Otherwise, PI � 1 must
be in region 1 or 3. If PI � 1 is in region 1, one of the following
three cases must occur:

(1) {PI > 0,PJ > 0,PB � 0} intersects with line 4, and then
{PI > 0,PJ > 0,PB � 0} is a mixed equilibrium (e.g., see
Figure 4(c)).

(2) {PI � 0,PJ > 0,PB > 0} intersects with line 5, and then
{PI � 0,PJ > 0,PB > 0} is a mixed equilibrium (e.g., see
Figure 4(d)).

(3) The origin is contained in the EUS, and then {PI > 0,
PJ > 0,PB > 0} is a mixed equilibrium (e.g., see Figure 4(f)).

Otherwise, PI � 1 must be in region 3 and then one of the
following three cases must occur:

(1) {PI > 0,PJ � 0,PB > 0} intersects with line 6, and then
{PI > 0,PJ � 0,PB > 0} is a mixed equilibrium (e.g., see
Figure 4(e)).

(2) {PI � 0,PJ > 0,PB > 0} intersects with line 5, and then
{PI � 0,PJ > 0,PB > 0} is a mixed equilibrium.

(3) The origin is contained in the EUS, and then {PI > 0,
PJ > 0,PB > 0} is a mixed equilibrium.
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The following lemmas complete the proof.
Lemma 6. Along the EUS curve {PI > 0,PJ > 0,PB � 0}, V(UI)
decreases.
Proof. Recall that when PB � 0, ξ � ρ. We show that in this
case, as η increases, V(UI) decreases. First, we evaluate V(UI)
as a function of η:

V(UI) �
∞∑

i�ne

πi

(
CW

i + 1
µ
−R

)
�

∞∑
i�ne

ρne (1− η)i−neπ0

(
CW

i + 1
µ
−R

)
� ρne (1− ρ)

η((CW/µ)ne −R)+CW/µ
η[(1− ρne )η+ ρne (1− ρ)] . (A.8)

Next, we find the derivative of V(UI)with respect to η:
∂V(UI)
∂η

�−ρne (1−ρ)(1−ρne )
((CW/µ)ne −R)η+CW/µ
η[(1−ρne )η+ρne (1−ρ)]2 . (A.9)

Last, we determine the sign of the derivative. ρne is strictly
positive, and so is the product (1− ρ)(1− ρne ). The denomi-
nator is also positive. It is left to show that the nominator is
also positive:(

CW

µ
ne −R

)
η+

CW

µ
>

(
CW

µ
ne −R +

CW

µ

)
η

�
CW

µ
(ne + 1− ν)η > 0. (A.10)

Therefore ∂V(UI)/∂η < 0, and we conclude V(UI) decreases
as η increases along the EUS curve {PI > 0,PJ > 0,PB � 0}. �
Lemma 7. Along the EUS curve {PI � 0,PJ > 0,PB > 0}, V(UI)
decreases.
Proof. We show that when η � 1 − ξ, V(UI) decreases as ξ
decreases. First, we evaluate V(UI) as a function of ξ:

V(UI) �
∞∑

i�ne

πi

(
CW

i + 1
µ
−R

)
�

∞∑
i�ne

ξne ξ i−ne (1− ξ)
(
CW

i + 1
µ
−R

)
�

∞∑
i�ne

ξ i(1− ξ)
(
CW

i + 1
µ
−R

)
� ξne

[
CW

µ
ne −R +

CW

µ
1

1− ξ

]
. (A.11)

Next, we find the derivative of V(UI)with respect to ξ:
∂V(UI)
∂ξ

� neξ
ne−1

[
CW

µ
ne −R +

CW

µ
1

1− ξ

]
+ ξne

CW

µ
1

(1− ξ)2 . (A.12)

Last, we determine the sign of the derivative. In this case,
η � 1− ξ, and therefore ξ < 1. As a result, 1/(1− ξ) > 1 and

CW

µ
ne −R +

CW

µ
1

1− ξ �
CW

µ

[
ne − ν +

1
1− ξ

]
> 0, (A.13)

and because neξ
ne−1 > 0 and ξne (CW/µ)(1/(1−ξ)2) are strictly

positive as products of positive elements, we conclude the
derivative is strictly positive. Therefore, along the boundary
that represents {PI � 0,PJ > 0,PB > 0}, when ξ decreases,
V(UI) decreases. �

Appendix B. Proofs for Section 4
Proof of Proposition 1. Wefirst explain howwe calculate the
thresholds K1 ,K2 ,K3 ,K4, and K5.

K1 is the maximum inspection cost level for which the
equilibrium strategy is still PI � 1. This level is achieved in
one of two scenarios: either UI � 0 >UJ or UI � UJ > 0. When
PI � 1, ξ � ρ and η � 1. Substituting into the definitions of
UI and UJ and solving the corresponding equalities, we get
K1 � S1 for UI �UJ > 0, and K1 � S2 for UI � 0>UJ . Moreover,
for ν > (∑ne

i�0 ρ
i − (ne + 1)ρne+1)/(1− ρne+1), S1 > S2; otherwise,

S1 6 S2.
K2 and K3 are defined as the minimum cost for which the

EUS contains the origin that can happen in one of the two
following scenarios:

• The cost for which the EUS boundary {PI > 0,PJ > 0,
PB � 0} intersects with the origin where UI � UJ � 0. At that
point, PB � 0 and therefore ξ � ρ. To find K2, we first find the
η that solves UI �UJ (which is the positive root of a quadratic
equation in η). We substitute η into UI and find κ such that
UI � 0.

• The cost for which the EUS boundary {PI > 0,PJ � 0,
PB > 0} intersects with the origin where UI � UJ � 0. At that
point, PJ � 0 and therefore η � 1. To find K3, we first find the
ξ that solves UI � UJ . Then, we substitute ξ into UI � 0 and
find κ.

K4 is the minimum cost for which {PI � 0,PJ > 0,PB > 0}
and is calculated by finding the cost for which UI � UJ � 0
when PI � 0.

K5 is the minimum cost for which PJ � 1 and is calculated
by finding the cost for which UI � UJ > 0 when PI � 0.

Next, we prove that given the EUS position when κ � 0,
we can determine which scenario will hold. To do so, we use
the properties of the EUS as proven in Lemmas 1 and 2. For
fixed ρ and ν, as we increase κ, the calculation of the UJ
component for every given strategy vector does not change;
the only change is in UI . If we increase κ continuously from
0, the EUS would shift to the left continuously. We use this
property in demonstrating the evolution of the equilibrium
as a function of κ.

We start from the EUS when κ� 0. In this case, the equilib-
rium strategy is always defined at the point that represents
PI � 1. Observing the EUS for these values, we distinguish
between three scenarios corresponding to those described in
the proof of Lemma 2:

1. The vertex representing PJ � 1 has UJ > 0. As we
increase κ, the EUS shifts to the left. At κ � K1, this vertex
intersects with the line UI � UJ > 0. At κ � K4, the vertex rep-
resenting PI � 1 intersects with the line UI � UJ > 0. Between
K1 and K4, the equilibrium strategy would be {PI > 0,PJ > 0,
PB � 0}; for κ > K4, it would be PJ � 1. Therefore we get sce-
nario 1.

2. The vertex representing PJ � 1 has UJ < 0, and the vertex
representing PI � 1 has UJ > 0. We increase κ, and at κ � K1,
this vertex intersects with the line UI � UJ > 0. At κ � K2,
the line representing {PI > 0,PJ > 0,PB � 0} intersects with
the origin. At K3, the line representing {PI � 0,PJ > 0,PB > 0}
intersects with the origin, corresponding to scenario 2.

3. The vertex representing PJ � 1 has UJ < 0, and the vertex
representing PI �1 has UJ < 0. Aswe increase κ, at κ�K1, this
vertex intersects with the line representing UI � 0. At κ � K2,
the line representing {PI > 0,PJ � 0,PB > 0} intersects with
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the origin. At K3, the line representing {PI > 0,PJ � 0,PB > 0}
intersects with the origin, corresponding to scenario 3. �

Proof of Lemma 3. 1. When UI � UJ > 0, PB � 0 and ξ �

(1−PB)ρ � ρ. From Proposition 1, PJ increases with κ. There-
fore, to show PE increases with κ in this case, it is enough
to show PE increases with PJ . We substitute PI � 1 − PJ and
PJ � (1− η)/ρ into the definition of PE :

PE �

ne−1∑
i�0
πiPI +PJ �

1
ρ

[ (1−ρne )η(ρ+ η−1)
(1−ρne )η+ρne (1−ρ) +1− η

]
. (B.1)

We use the chain rule:

dPE

dPJ
�
∂PE

∂ξ
∂ξ
∂PJ

+
∂PE

∂η

∂η

∂PJ

� 0+
(
−

(1− ρ)2ρne

ρ(η− ρne (η+ ρ− 1))2

)
(−ρ)

�
(1− ρ)2ρne

(η− ρne (η+ ρ− 1))2 > 0. (B.2)

2. When UI � 0 >UJ , PJ � 0 and η � 1. Then,

PE �

ne−1∑
i�0

πiPI �
1− ξne

1− ξne+1 PI . (B.3)

When κ increases, PB increases and therefore ξ decreases. As
a result, (1− ξne )/(1− ξne+1) decreases. At the same time, PI
decreases, and therefore PE decreases. �

Numerical Analysis for Observation 1. To analyze the
change in PE at the interval [K2 ,K4] for (ρ, ν) such that sce-
nario 2 holds, we took κ∗ � K2 ,K2 + 0.1(K4 − K2),K2 + 0.2 ·
(K4 −K2), . . . ,K4. Then, we calculated PE at every κ∗. By plot-
ting the graph of PE as a function of κ at those points, we ver-
ified that PE decreases with κwhen κ ∈ [K2 ,K4]. We repeated
the same process for (ρ, ν) such that scenario 3 holds, and
verified that within the interval (K3 ,K4), PE decreases with κ.
The numerical analysis was done systematically by examin-
ing pairs of ρ and ν with high resolution.

Proof of Lemma 2. To prove Proposition 2, we rely on the
evolution of the equilibrium at each scenario as described
in Proposition 1. For κ 6 K1, PE is fixed and equal to Pobs

E .
Consider now κ > K1.

1. When scenario 1 holds, UI � UJ > 0 on the interval
(K1 ,K5). By Lemma 3, PE is monotonically increasing with κ
on this interval. Note that as long as PI > 0, PE < 1 by defini-
tion (see Equation (15)). The maximum is obtained at every
κ > K5, where PJ � 1 and Punobs

E � 1.
2. When scenario 2 holds, by Lemma 3, PE increases

with κ on the interval (K1 ,K2) for which UI � UJ > 0. By
Observation 1, PE decreases with κ on the interval (K2 ,K4)
for which UI �UJ � 0, and stays fixed for every κ > K4, where
PE � Punobs

E . Therefore PE is unimodal and maximized at K2.
3. When scenario 3 holds, PE decreases when κ ∈ (K1 ,K3)

for which UI � 0 > UJ , and by Observation 1, it continues to
decrease on the interval (K3 ,K4) for which UI � UJ � 0. For
κ > K4, PE is fixed and equal to Punobs

E . Therefore PE decreases
with κ and reaches its maximum at every κ 6 K1, where PI �1
and PE � Pobs

E . �

Proof of Proposition 3. When κ 6 K1, SW �λUI > 0. Because
UI decreases with κ, the maximum is obtained when κ � 0.
For κ > K1, our analysis corresponds to scenarios 1–3. For
each scenario, we show SW is monotonically decreasing
with κ.

Scenario 1. For K1 6 κ <K5, where the equilibrium strategy
is {PI > 0,PJ > 0,PB � 0}, as κ increases, PI decreases and the
system becomes more congested. Consequently, UJ and UI
decrease, and as a result, SW also decreases until it reaches
κ � K5. At this point, UJ reaches its minimum value, and so
does SW , and they both stay fixed for every κ > K5.

Scenario 2. For K1 6 κ <K2, where the equilibrium strategy
is {PI > 0,PJ > 0,PB � 0}, by the same argument above, SW
decreases with κ. For κ > K2, PB > 0 and therefore SW � 0.

Scenario 3. For κ > K1, PB > 0 and therefore SW � 0. �
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